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Multistability of oscillatory thermocapillary convection in a liquid bridge

V. M. Shevtsova, D. E. Melnikov, and J. C. Legros*
MRC, CP-165/62, Universite´ Libre de Bruxelles, 50, Avenue F. D. Roosevelt, B-1050 Brussels, Belgium

~Received 28 April 2003; published 31 December 2003!

A parametric investigation of the onset of chaos in a liquid bridge was numerically carried out for a medium
Prandtl number liquid, Pr5 4, and unit aspect ratio under zero-gravity conditions. Spatiotemporal patterns of
thermocapillary flow were successively studied beginning from the onset of instability up to the appearance of
the nonperiodic flow and further on. Well-tested numerical code is used for solving the three-dimensional
time-dependent Navier-Stokes equations in cylindrical coordinate system. Two-dimensional steady flow be-
comes oscillatory with azimuthal wave numberm52 as a result of Hopf bifurcation at Re1

cr5630. A second
independent solution with wave numberm53 was found to appear at Reynolds number Re2

cr'810. Two
branches of three-dimensional periodic orbits, traveling waves withm52 andm53, coexist for Re.Re2

cr .
Additional stable branches do not connect them. The different flow organizations reveal different behaviors in
the supercritical area. Them52 traveling wave always remains periodic, but the modem53 starts exhibiting
chaotic features at Re'4200. The onset of temporal nonperiodicity was shown to be associated with devel-
opment of broadband noise in spectra and preceded by a quasiperiodicity. The flow stabilizes back to periodic
with single frequency when Re exceeds a value Re'5100. The window of periodicity exists up to at least
Re56000, the largest investigated value of the Reynolds number.

DOI: 10.1103/PhysRevE.68.066311 PACS number~s!: 47.27.2i, 47.35.1i, 05.45.Pq, 47.20.Dr
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I. INTRODUCTION

Investigation of convective flows in systems with free i
terface attracts a lot of attention, specifically due to th
relevance to crystal growth processes under microgra
conditions. Temperature gradients along the interface
tween two immiscible fluids cause variations of surface t
sion resulting in tangential stresses, which can drive b
flow motion. The stability of such thermoconvective flow
was actively studied in a half-zone model, which cor
sponds to floating zone~FZ! techniques of a crystal growth
Although the FZ method seems to be superior with respec
the other growth technique due to the absence of con
with crucible, it has not gained an importance for the crys
growth on the earth. The reason for that is the limitation
the hydrostatic pressure, permitting only the growth of cr
tal of small diameter. This drawback, however, can be ov
come under microgravity conditions. In the half-zone mo
~liquid bridge! a small volume of liquid is held between tw
coaxial circular disks, which are kept at different tempe
tures,DT5Thot2Tcold . As the applied temperature gradie
is parallel to the interface, motion from the hot to the co
region appears for any nonzero value ofDT. When the tem-
perature difference between the disks exceeds the cri
value,DT.DTcr , unique for a given set of parameters, t
flow is three dimensional and/or unsteady. Generally, t
hydrothermal waves propagating in opposite directions bi
cate from two-dimensional~2D! state at the critical point
They result in standing~SW! or traveling ~TW! wave de-
pending on the ratio of their amplitudes. Understanding
evolution of the thermocapillary flows is valuable for mat
rial processing in space. The transition from the steady
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oscillatory flow is well comprehended due to the numeri
modeling ~see for example Wanschuraet al. @1#, Leypoldt
et al. @2#, Lappaet al. @3#!. These results are supported b
the experimental studies, see recent review by Schatz
Neitzel @4#.

An increasing number of experimental studies indica
that convection in melt should be turbulent@5#. Nevertheless,
because of great complexity of the turbulent flows, all n
merical simulations of transport processes were perform
assuming laminar flow in the liquid phase. Apart from th
from the more physical side, the hydrodynamics effects
the half-zone model are of basic interest for the dynam
occurring in the system, as it is an excellent example o
dissipative dynamical system. Therefore, the present stud
aimed at investigating time-dependent convective flows
the strongly supercritical regimes. The consideration of a
uid bridge from the point of nonlinear physics has been do
only experimentally under terrestrial conditions. In one
the first publications in such trend Petrovet al. @6# have con-
sidered liquid bridges as a nonlinear dynamical system
control an isolated unstable state far away from the criti
point for Prandtl number Pr535.

The transition from steady flow to chaos has been ca
fully traced in experiments by Uenoet al. @7# for silicone oils
of 1, 2, and 5 cSt. The flow was visualized simultaneously
two video cameras and time-dependent temperature wa
corded by a thermocouple placed slightly inside of the brid
at midheight. They observed numerous bifurcations of
flow on the way to chaos: 2D steady→ SW~1! → TW~1! →
transition→ SW~2! → TW~2!→ chaos→ turbulence. Each
of the regimes has been identified through the observatio
the suspended particle motion, the surface temperature v
tion, its Fourier spectrum, and trajectories in phase pla
The evaluations of the correlation dimension and the ma
mum Lyapunov exponent have also been done for the dif
ent flow states.

/
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SHEVTSOVA, MELNIKOV, AND LEGROS PHYSICAL REVIEW E68, 066311 ~2003!
For examination of spatiotemporal behavior of the liqu
from laminar flow state up to the onset of chaotic motio
Frank and Schwabe@8# have used another approach. In a
dition to the optical observations~views from above and
from the front!, up to 15 thermocouples could be plac
around one-half of the free surface without touching it.
allowed them to recognize different spatial reasons for q
siperiodic and period-doubling temporal behavior and id
tify various spatiotemporal chaotic structures. For the liqu
with Pr57,49,65 they observed such phenomena as split
of subharmonics in the Fourier spectrum, locking of quas
eriodic modes, the presence of only odd harmonics,
quency skips.

Although, the mentioned above experiments@7,8# have
been done in tiny liquid bridges, the influence of buoyan
force on the nonlinear behavior is not negligible. The pres
results are targeting on the study of the nonlinear charac
istics of the flow under zero-gravity conditions. First of a
the nonlinear system admits regime of bistability. A bran
of SW with azimuthal wave numberm52 bifurcates from
the basic branch of axisymmetric steady state; this bra
remains stable in the considered range of parameters. A
ond stable branch with azimuthal wave numberm53 ap-
pears later and above the threshold of instability reve
other periodic, quasiperiodic, and chaotic attractors. Our
est calculations of the similar problems under gravity con
tions demonstrate quite different behavior of the system w
respect to zero-gravity case and will be published elsewh

To the best of our knowledge, the bifurcation of the
mocapillary flow in a liquid bridge in the strongly supercrit
cal regime has not yet been mapped out. The finite size
tems with an open interface along which Marangoni fo
acts have been out of focus. The transition to chaos has
extensively studied for convective flows in several we
defined systems: Rayleigh-Be´nard convection or convectio
in binary mixtures. Different routes to nonperiodic motio
have been identified for convective flows in closed syste
by Baker and Gollub@9#. Besides the examination of th
multistability properties, one of the goals of this paper is
identify numerically the bifurcation route to chaos for th
case of pure thermocapillary convection in cylindrical vo
ume.

II. FORMULATION OF THE PROBLEM

A liquid bridge consists of a fluid volume held betwee
two differentially heated horizontal flat concentric disks
radius R, separated by a distanced. The geometry of the
problem is shown in Fig. 1. The temperaturesTh and Tc
(Th.Tc) are prescribed at the upper and lower solid-liqu
interfaces, respectively, yielding a temperature differe
DT5Th2Tc . The surface tension and kinematic viscos
are taken as linear functions of temperature,

s~T!5s0~Tc!2~ds/dT!~T2Tc!,

n~T!5n0~Tc!1~dn/dT!~T2Tc!.
06631
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The governing Navier-Stokes, energy, and continuity eq
tions are written in nondimensional primitive-variable fo
mulation in cylindrical coordinate system:

]V

]t
1V•“V52“P12RnS3“~Q1z!

1@11Rn~Q1z!#nV, ~1!

“•V50, ~2!

]Q

]t
1V•“Q52Vz1

1

Pr
nQ, ~3!

where velocity is defined asV5(Vr ,Vw ,Vz), Q05(T
2Tc)/DT is the dimensionless temperature, andQ is the
deviation from the linear temperature profileQ5Q02z, S
5(1/2)(]Vi /]xk1]Vk /]xi) is the strain rate tensor. On
may find the explicit form of these equations in Ref.@10#.
The scales for time, velocity, and pressure areVch5n0 /d,
tch5d2/n0, and Pch5r0Vch

2 . The temperature of the cold
disk T05Tc is used as the reference, son05n(Tc).

At the rigid walls no slip conditions are used,V(r ,w,z
50,t)50, V(r ,w,z51,t)50, and constant temperatures a
imposed,Q(r ,w,z50,t)50, Q(r ,w,z51,t)50.

For the particular caseV5pR2d in the absence of gravity
the liquid volume takes an upright cylindrical shape. He
the limit of asymptotically large mean surface tension,s0, is
considered, therefore the free surface shape is not influen
by static or dynamic pressure@11#. On the cylindrical free
surface (r 51,0<w<2p,0<z<1), due to the kinematic
conditionVr50 and the stress balances are

2@11Rn~Q1z!#S•er1ReS ez]z1ef

1

r
]fD ~Q1z!50.

~4!

The free surface is assumed thermally insulated] rQ(r
51,w,z,t)50. The Reynolds, Prandtl, Marangoni numbe
the relative variation of the viscosity and aspect ratio
defined as

FIG. 1. Geometry of the problem.
1-2
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TABLE I. Effect of the grid resolution on the parameters of supercritical flow, Re'5 Recr .

Grid size Re Initial symmetry Final symmetry F v0

@25316321# 3000 m52 m52 6.2531021 48.58
@25316331# 3000 m51 m52 6.3231021 48.61
@25332331# 3000 m56 m52 6.6731021 48.47
@49316341# 3000 m54 m52 6.3731021 51.50
@25316331# 3000 m53 m53 8.2331021 54.56
@49316341# 3000 m53 m53 8.8831021 59.27
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Re5
sTDTd

r0n0
2

, Pr5
n0

k
, Ma5Re Pr, Rn5

1

n0

]n

]T
DT,

G5
d

R
. ~5!

Throughout this parametric study the Prandtl number,
variation of viscosity, and the aspect ratio are kept const
Pr54, Rn520.5, andG51. Keeping all the parameters o
the problem constant, the flow is controlled by the Reyno
number, which is proportional to the temperature differen
between the rods.

III. SOLUTION METHOD

The three-dimensional, fully nonlinear governing equ
tions ~1!–~4! were solved in a primitive-variable form on
staggered stretched mesh. The velocity field is defined a
points, which are the central nodes of the cell sides. Val
of the scalar variables are stored at the centers of basic c
Central differences for spatial derivatives and forward diff
ences for time derivatives were utilized for discretization
the equations. These equations were integrated over non
lapping finite volumes. The computation of the velocity fie
at each time step was carried out with the projection met
~see, e.g., Fletcher@12#!. The singularities at the symmetr
axis of the cylindrical domain may cause numerical pro
lems. To overcome these difficulties, velocity on the cylind
axis was calculated separately with a special algorithm,
veloped by the authors. A combination of fast Fourier tra
form in the azimuthal direction and of an alternative dire
tion implicit method in the others was applied for calculati
the Poisson equation for pressure. The detailed descriptio
the numerical code and its validating procedure near
critical Reynolds number~onset of oscillatory 3D flow! can
be found in Ref.@10#.

As the present results spread to supercritical values of
Reynolds number, the code validation was extended for
region, when Re'5Recr . The data in Table I present th
results obtained on different grids. Comparison was done
the net azimuthal flowF, see definition in Eq.~7!, and for
the fundamental frequency of oscillations when Re53000.
In the case of a final symmetrym52 the results from four
different meshes have been compared, where the num
indicate the amount of the points in the radial, azimuthal, a
axial directions, respectively. The variation of the azimut
flow and the frequency for this highly supercritical Reynol
06631
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number on different grids is about 6%. Optimizing both t
quality of the results and time consumption, the basic cal
lations have been done on the intermediate grid@25316
331# with smaller space intervals near the hot and, es
cially, near the cold corner. The relatively low dispersi
between the results on the chosen grid and the more fine
allows us to conclude that the flow and stability features
well resolved. As the present system allows coexistence
two different modes, the convergence is done for both
them. The results of the test for convergence on grid for
flow with m53 symmetry are similar to those form52, see
the last two lines in Table I. Agreement of behavior of t
integral and spectral characteristics for the two differe
grids was a good validation of the code. An additional re
lution study concerning inheriting the symmetry will b
given in the following section when Re'10Recr .

For integrating the governing equations at a supercrit
Reynolds number, a solution for the previously investiga
Re was taken as initial guess. The temperature oscillat
were recorded at four azimuthally equidistant points ins
the liquid bridge atr 50.9 andz50.5. To identify unambigu-
ously the 3D time-dependent flow structure, its axisymme
component is subtracted from the resulting flow field and
remaining disturbance flow is analyzed. The azimuthal wa
number of the periodic oscillatory flowm corresponds to the
temperature field structure: it is organized in such a man
that after the axisymmetric component is subtracted there
m hot andm cold spots observed in a transversal section a
on the free surface, see below Figs. 3 and 4.

IV. DESCRIPTION OF RESULTS

A. Multistability of the oscillatory flow

The traveling wave with azimuthal wave numberm52
bifurcates from the axisymmetric steady state at Re1

cr5630.
The 3D oscillatory flow is a result of a supercritical Ho
bifurcation and the periodic orbit represents the unique sta
solution near the onset of the instability. Beyond the fi
critical point Re>Re2

cr5810, the system admits the coexis
ence of two stable oscillatory solutions with two differe
wave numbersm52 andm53. One should remember tha
these two solutions do not represent the different mode
the linear problem; on the contrary, they are both the res
of the solution of the full nonlinear problem, Eqs.~1!–~3!.
For Re.Re2

cr transitions between the two stable orbits wi
m52 andm53 have never been observed. The final so
tion depends on the initially chosen wave-number guess

Near the threshold of instability the liquid bridge syste
exhibits only one solution with self-sustained oscillation
Going further to the supercritical area the flow organizat
1-3
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SHEVTSOVA, MELNIKOV, AND LEGROS PHYSICAL REVIEW E68, 066311 ~2003!
with a higher wave number will be excited. For examp
Uenoet al. @7# and Shevtsovaet al. @13# have experimentally
observed that the wave number switches fromm51 to m
52 when moving to the far supercritical region of the Re
nolds number. In the vicinity of that bifurcating point tw
different symmetry patterns coexist in a limited range
Reynolds numbers. However, no theoretical results were
ported until now, when two solutions with different symm
tries coexist over a vast range in Re and not in the form
the mixed mode.

The initial symmetry of the system has different mean
for the real experiment and theory. Concerning the exp
ments the term ‘‘symmetry of perturbations’’ makes litt
sense as they have a nonregular stochastic nature. In nu
ics, the initial symmetry suggests, for example, the form
the perturbations added to the steady two-dimensional s
tion to initiate the instability. Different initial guesses ma
execute various modes in calculations. For example, if
initial perturbations introduced into the system are of
form sin(m1w), the solution will be described by the sam
sin(m1w) function if this oscillatory solution is stable. Othe
wise, after some time it will modify from the initially taken
azimuthal wave numberm1 to another solution with a differ-
ent m2 which is stable for considered set of paramete
Thus, despite the symmetry of perturbations the system m
arrive at a solution in the form of waves withm2 wave num-
ber.

Indeed, for our particular system in the region of the Re
nolds numbers 630,Re,810 only the oscillatory flowm1
52 is stable. To prove it, the calculations have been done
Re5700 choosing the initial guess with another symme
m253. Results shown in Fig. 2 demonstrate that after
caying the modem53, the stable solution withm52 wave
number is established. Two insertions in Fig. 2 show the d
in a smaller time scale at four equidistant points,Dw5p/2,
which are located at the same radial and axial positions.
two solutions with different symmetries can be identified a
cording to the phase shift between the signals.

The influence of initial guess symmetry on the final sy
metry of stable solution has been carefully studied for
far-supercritical Reynolds numbers Re53000, 4500, 6000.
Analysis of the results obtained allows us to propose a k

FIG. 2. Ascertainment of stable oscillatory solution with wa
numberm52. Initial guess is a flow field with a symmetrym53
which is unstable for this set of parameters and finally decays.
temperature profiles correspond to Re5700, Pr54, G51.
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of a rule of inheriting the parity of initial symmetry for R
.810; namely, taking an initial guess withm51,2,4,6, etc.,
symmetries, after some transient time the system will arr
to m52 solution. Otherwise, all the odd basic symmetr
~exceptm51) give final state of the system withm53. For
the largest Reynolds number, Re56000, this test has bee
successfully performed on three different grids; the inform
tion is given in Table II. Note that even wave-number ba
symmetries take more computational time to pass the t
sient period and attain final stable solution than the odd on

The snapshots of the temperature disturbances field
horizontal transversal section (z50.5) and on the free sur
face are shown in Fig. 3 when Re51500 for flow patterns of
different symmetries. The position ofw50 corresponds to
the horizontal line passing through the circle center and
positive direction forw is counterclockwise direction. The
temperature field with two hot~bright! and two cold~dark!
spots in Fig. 3~a! represents TW with a modem52, and the
snapshots with three hot and three cold spots in Fig. 3~b!
confirm the existence of a periodic solution withm53. Note
that in both cases the waves propagate practically azim
ally, the angles between the spots andz axis on the free
surface in Fig. 3 are close to zero. To understand the b

e

TABLE II. Study of the final flow symmetry on different grids
Re'10 Re1

cr .

Grid size Re Initial symmetry Final symmetry

@25316331# 6000 m52 m52
@25332331# 6000 m56 m52
@49316341# 6000 m51 m52
@25316331# 6000 m53 m53
@25332331# 6000 m55 m53

FIG. 3. Temperature disturbance fields in az50.5 horizontal
cross section~upper part! and on the free surface~lower part! for
Pr54, Re51500, G51, Rn520.5. ~a! m52 and~b! m53 solu-
tions. The axisymmetric part is subtracted from the total tempe
ture distribution.
1-4



re
tu
m
th
d
,

te
ng
lly

d
a

old
in
il

ity

te
in
s

th
he

d
kip
ta

av
s
th
la
s
ith
oo

re-
ond
re-
r-

um-

cs

li-
s a
-
s is
eir
c-
a

cs.

f
f

of
-
ency

en-

lcu-
n.

MULTISTABILITY OF OSCILLATORY . . . PHYSICAL REVIEW E 68, 066311 ~2003!
structure of the temperature disturbances, the th
dimensional images of surfaces of the constant tempera
distributions are shown in Fig. 4 for the same set of para
eters. Again, the axisymmetric part is subtracted from
total temperature field. For both solutions the snapshots
play the surfaces of the same disturbance temperatureQ̃
5Qmin10.65(Qmax2Qmin), whereQmax andQmin are the
maximal and minimal values ofQ in the bulk. In both pat-
terns presented in Fig. 4, the surfaces are slightly twis
which is a reflection of one of the features of the traveli
waves~in case of standing waves they would be vertica
straight!.

Note that in the case ofm52 solution the two spots an
surfaces of constant temperature disturbances have the
muthal symmetry. For them53 solution, the symmetry in
azimuthal direction is broken even at the moderate Reyn
number, when the flow is still periodic. It is clearly seen
Fig. 4~b! that the closest surface has a kind of spike, wh
the two others, they do not.

B. Spatiotemporal properties of TW mÄ2

At Reynolds numbers close to the threshold of instabil
Re1

cr5630, traveling wave with azimuthal wave numberm
52 represents the only stable solution. The smooth ex
sion of the limit cycle in phase space near the critical po
indicates the supercritical Hopf bifurcation. The growing o
cillations saturate on a nearby limit cycle. The radius of
limit cycle is proportional to the saturated amplitude of t
oscillations. Staying on them52 solution, the calculations
have never led to chaos. There are no signs indicating a
tional bifurcations of the system, such as frequency s
period doubling, or quasiperiodicity. Only one fundamen
frequency and its harmonics always present in spectra.

Fourier analyses of the temperature time signals h
been done for all investigated Reynolds numbers. Result
the Fourier analysis are summarized in Fig. 5, where
main frequency and its two harmonics are shown. To disp
the highest harmonics, the square root of the amplitude
drawn. The evolution of the temporal power spectrum w
increase of the Reynolds number demonstrates the sm

FIG. 4. Surfaces of constant temperature disturbance fields
different symmetry patterns in three-dimensional representation
Pr54, Re51500, G51, Rn520.5. ~a! m52 and~b! m53 solu-
tions.
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development of the oscillatory flow. The main frequency
tains the leading position in the spectra. The first and sec
harmonics are clearly visible throughout the investigated
gion. The maxima of the amplitudes for the different ha
monics are dispersed over some region of Reynolds n
bers. The amplitude of the main frequencyA05A(v0) has a
maximum at Re'2000, the first and second harmoni
achieve maxima at Re'3000 and Re'2500, respectively.

Ratios of the amplitudes of the harmonics to the amp
tude of the main frequency in the appropriate powers a
function of Re are shown in Fig. 6~a!, because they are pro
duced by nonlinearity. The generation of higher harmonic
an imminent consequence on the nonlinearity, and th
growth is not necessarily related to bifurcations. The fun
tions in Fig. 6~a! do not reveal any jumps, which might be
sign that there is no bifurcation for them52 solution. The
first weak transition in the system occurs at Re'1000. As it
follows from Fig. 6~a! in the vicinity of this point the ampli-
tudeA1 starts growing up. It never dominatesA0 but results
in transformation of the signals.

To characterize the state of the system~attractor!, one
should calculate some invariant of the motion dynami

or
or

FIG. 5. Evolution of temporal power spectrum with increase
the Reynolds number for them52 solution. Square root of ampli
tude is shown. The spectra always have one fundamental frequ
and harmonics. No broadband noise is generated.

FIG. 6. Ratios of the amplitudes of harmonics to the fundam
tal frequency in the appropriate powers~a! and global entropy~b!,
Eq. ~6!, as functions of the Reynolds number form52 traveling
wave.Ai ,i 51,2 etc., means the amplitude of thei th harmonic,A0

is the fundamental frequency. The rhombs correspond to the ca
lated points, and the solid line is the result of spline interpolatio
1-5
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SHEVTSOVA, MELNIKOV, AND LEGROS PHYSICAL REVIEW E68, 066311 ~2003!
Here the entropyS is chosen for describing the spatiotemp
ral behavior of the system. The entropy is an integral qu
tity, taking its birth in thermodynamics and statistics, and i
criterion of how well the system is ordered and structuriz
To see the contribution of the dynamically important mod
the zero mode, representing the spatiotemporal average v
of the signal, was excluded from the calculation of the glo
entropy as it contains a large percentage of the total en
of the system. Conventionally, the global entropy is defin
as follows:

S~Re!52
1

ln~N21! (
n51

N

pn lnpn , pn5an
2Y (

j 51

N

aj
2 ,

~6!

whereaj are eigenvalues of the spectrum, and the freque
spectra are calculated using the fast Fourier transform f
the time series ofN54096 points,Q(t)5(n50

N anexp@i(vnt
1wn)#. To designate the amplitude of the fundamental f
quency v0 and its harmonics, the following is assume
a(k v0)5Ak21.

The entropy, providing a sign of the relative complex
of the signals, is sensitive to each change of the dynamicS
tends to grow when modulation or bifurcation occurs in t
system. Figure 6~b! shows how the entropy follows an
change of spatiotemporal organization. In agreement with
previous analysis, its behavior does not reveal any ab
transition in the system. Comparing Figs. 6~a! and 6~b!, one
can see that behaviors of the entropy and of the ratioA1 /A0

2

~solid line! are rather well synchronized near the thresho
Indeed, the entropy starts noticeably to grow at Re'1000
when the first harmonic with distinguishable amplitude a
pears in the system. The maximal slopedS/dRe is attained
when the higher harmonics start to grow. The entropy
crease is associated with a more uniform distribution of
ergy among the superior eigenvalues. The entropy
proaches to a maximum at Re'3500, when the ratioA2 /A0

3

is close to maximum. It occurs due to overall income of t
highest eigenvalues. After some transient time passed,S de-
crease means that the system approaches a local sta
equilibrium.

Equation~6! has been normalized with the Shannon e
tropy for a completely random process. Such normalizat
means thatS will converge to the highest possible uni
value, S→1, as the data approach true randomness~white
noise!. For the considered type of thermocapillary flow,m
52, the peak valueS50.09 indicates that a quite ordere
flow field oscillates in the liquid bridge. The total variatio
of the entropy is about 8%, although the governing para
eters were changed in a large range, 0,«,8.25. Here

«5~Re2Recr!/Recr

is the distance from the critical point. The situation, when
entropy stays practically constant with Re, physically me
that the energy is spread over a few eigenvalues~harmonics!.
This is coherent with the information coming from Figs.
and 6.
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Note that the same plots made for the axial velocity
identical to the temperature ones presented in Fig. 6~a!. The
difference is that at Re'1000 the oscillations of axial veloc
ity switched from one-maximum to two-maxima ones~Fig.
7!. This type of oscillations,Vz(t), are exposed inside th
insertion in Fig. 7. Moving on to higher values of the Re
nolds number, difference between the maxima of axial vel
ity remains constant with good accuracy. It is found that
phase shift between the first harmonic and the fundame
frequency is responsible for the splitting of the maximu
e.g.,V(t)5( iVicos(vi t1ai), wherea iÞa j , if iÞ j . Unlike
the velocity behavior, the temperature oscillations cont
one maxima throughout the investigated range of the R
nolds number. In this case the phase shift is equal to z
and, respectively, no second maximum is observed.

Despite the fact that them52 motion is strictly time pe-
riodic up to Re56000 the three different regimes have be
determined. Analyzing carefully the behavior of differe
harmonics and their ratios it appears that existence of th
regimes can be disclosed by dependence ln(A1) versus ln(A0)
with the increase of Reynolds number, see Fig. 8. For a
ter understanding the Roman figures mark the different
gimes and a few Reynolds numbers are written along
curve. Comparison of the flow patterns and temperat
fields does not exhibit distinctive features of the various
gimes, but they can be described through nonlinear cha
teristics.

~1! Near-threshold weakly nonlinear oscillations, 63
<Re,1000, where the limit cycle isthe circle. The peak-
splitting phenomenon of the axial velocity oscillations, s

FIG. 7. The evolution of the maxima of axial velocity signals
the Reynolds number increases form52 oscillatory solution. One-
maximum oscillations undergo transition to two-maxima ones
Re'1000.

FIG. 8. The dependence of the logarithms of the first harmo
amplitudeA1 on the amplitude of main frequencyA0 when the
Reynolds number increases from Re5700 up to Re56000. Despite
the strictly time-periodic oscillations ofQ andV the three different
regimes are seen for them52 solution.
1-6
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Fig. 7, starts at the end of this regime.
~2! Strongly nonlinear oscillations where the first ha

monicA1 rapidly grows, 1000,Re,2000, and the shape o
limit cycle transforms to a heartlike shape. At the end of t
regime the entropy slopedS/dRe has maximum.

~3! Nonlinear oscillations where the harmonicA1 is al-
most independent of the main frequencyA0, and the former
decreases much slower than the latter, 2300,Re,6000. The
dependence ln(A3) on ln(A0) demonstrates growth ofA3 at
this regime~not shown by plot!. The shape of the periodi
time signal Q(t) slightly deviates from sinusoidal, whic
causes a further transformation of the limit cycle.

C. Spatiotemporal properties of TW mÄ3

Here we shall discuss the results obtained at values o
Reynolds number far beyond Re2

cr . Again, the Fourier analy-
sis of the temperature time signals has been done for
investigated Reynolds numbers. Results of the Fourier an
sis are summarized in Fig. 9. Evolution of the tempo
power spectrum with increase of the Reynolds number
the m53 solution is completely different from that for th
m52 solutions~see Fig. 5!. The solution withm53 wave
number admits the presence of a rather strong first harm
with double frequency 2v0 in the spectrum just near th
threshold of instability. The higher harmonics appear in
spectrum moving above the second critical point Re5Re2

cr .
Until Re53300 the dynamic of the flow demonstrat

smooth behavior. For each particular Re the time signal
temperatureQ(t) and velocitiesV(t) are periodic with a
nonmodulated amplitude. The temperature time depende

FIG. 9. Evolution of temporal power spectrum with increase
the Reynolds number for them53 solution. Square root of ampli
tude is drawn. The second incommensurate frequency exists
3300,Re,5300. The broadband noise is developed at 4200,Re
,5000 causing the aperiodic oscillations.

FIG. 10. Main frequencies vs the Reynolds number for them
53 solution. The frequencyv1 exists only in quasiperiodic and
aperiodic phases and slightly beyond the onset of the second
odic dynamics (3300<Re<5300).
06631
s

he

ll
ly-
l
r

ic

e

of

ce

contains one maxima per period. At Re'3300 the periodic
solution with one frequency gives up its stability and
independent frequencyv1 appears in the spectrum~it is less
than the fundamental one, but it is not really a subharmon!.
The modulation of time signalsV(t) and Q(t) is observed
from the birth of the frequencyv1. The evolution of both
frequencies with the Reynolds number and their amplitu
are shown in Figs. 10 and 11. The fundamental frequencyv0
is almost a linear function of the Reynolds number. At t
point Re'3300, where the independent frequencyv1 has a
noticeable amplitude, it has a value ofv1'30.21 and is
slightly larger than 0.5v0. As v1 remains almost constan
the ratio v1 /v0 decreases with increasing the Reynol
number, and hence at least sometimes their ratio beco
irrational. One can speak about excitation of the two inco
mensurate frequencies. As a result, in the vicinity of su
bifurcations, the flow becomes quasiperiodic. For example
happens at Re'3500. The representative return map of t
oscillations of the axial velocity, proving the realization
the quasiperiodicity one may find in Fig. 12. These retu
~peak-to-peak! maps of axial velocity demonstrate the diffe
ent regimes of the flow organization. The return map is ma
in the following way: moving along the records of th

f

or

ri-

FIG. 11. Amplitudes of the main frequencies~fundamental and
the subfrequency! in spectrum for them53 solution as a function
of the Reynolds number.

FIG. 12. Return maps of axial velocity for different Reynold
numbers form53 solution. Re53000—periodic one-frequency
oscillations; Re53500—two incommensurate frequenc
quasiperiodic oscillations; Re53950—period doubling;
Re54500—aperiodic oscillations.
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SHEVTSOVA, MELNIKOV, AND LEGROS PHYSICAL REVIEW E68, 066311 ~2003!
time signal of axial velocityVz(t) with a constant time step
we search the local maxima. The functionXn11 is an ampli-
tude of (n11)th maximum versus the amplitudeXn of the
previousnth maximum.

The ratiov1 /v0 continuously diminishes and never has
plateau, consequently, no phase locking is noticed. As
locking has been observed during the range of Re, wherev1
exists, one may suggest that the nonlinear interactions
tween the two oscillations are weak.

The following bifurcation takes place at Re'3950. Near
this point the frequencyv1 is slightly larger than half of the
fundamental frequency and the latter goes on growing. In
tably, a period doubling takes place whenv0 /v152. The
image of this motion in space isT2 Torus, and the phas
plane in Fig. 13 indicates existing of the period-doubli
state. It manifests itself in the form of additional loop in th
phase plane~Fig. 13! and the return map consists of thre
points~Fig. 12!. The phase planes of axial velocity shown
Fig. 13 correspond to the same setting of the Reynolds n
bers as in Fig. 12. The phase plane for the periodic regi
Re53000, represents a close curve but not a perfect cir
as the system is far above from the critical point,«53.9.

The typical temperature signal for this range of prechao
Reynolds numbers, Re54000, and its power spectrum a
shown in Fig. 14. Numerous harmonics of comparable po
already exist in the spectrum along with the strong lon
wave modulation of the temperature time dependence. As
Reynolds number is increased further, the sharp spe
peaks are wiped out by a continuous amplification of d
namical noise~Figs. 14 and 15!. The peaks become mor
numerous and the gaps between them become shallow
results in a pattern when nonregular oscillatory motion
established. Actually, it is not easy to prove rigorously tha

FIG. 13. Phase planes of axial velocity for different Reyno
numbers,m53 solution. Re53000—periodic one-frequency osci
lations; Re53500—two incommensurate frequency quasiperio
oscillations; Re53950—period doubling; Re54500—aperiodic os-
cillations.
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strange attractor is chaotic. According to our calculations
m53 solution manifests chaotic behavior beginning fro
Re'4200. The strip across the plot in Fig. 9 points out
widespread and featureless distribution of the maxima in
region 4200<Re<5100. This area looks as a locall
‘‘wrinkled tissue.’’ The weak broadband noise does not co
ceal the two discrete frequencies but its presence leads to
onset of absolutely continuous spectral background. T
presence of noise ‘‘washes out’’ the fine structure of the
tractors.

The temporal power spectrum of the temperature is sho
in Fig. 15 for Re54500, when aperiodic regime is progres
ing. Two characteristic frequenciesv0570.56 and v1
532.36 dominate in the nonperiodic state. Actually, in t
power spectrum there is second peak, close to the sub
quency, of more or less the same order of value, see Fig
and 15. This peak really appears to be linear combina
v02v1 within the estimated standard errors and it may be
identified at 3300,Re,5100.

The variation ofv0 and v1 with Re, shown in Fig. 10,
illustrates that in the vicinity of the point Re'5000 both
frequencies have a kind of jump:v0 steps up andv1 steps
down. Shortly after the jump at Re'5100 the amplitude of
the frequencyv1 drastically decreases and it completely d
appears at Re'5300~see Fig. 11!. Along with vanishing the
frequencyv1 nonperiodic flow is stabilized back to period
at Re'5100, and remains periodic until the maximal inve
tigated Reynolds number 6000.

Ratios of the amplitudes of the harmonics to the amp
tude of the main frequency in the appropriate powers
drawn in Fig. 16~a! as functions of Re. In accordance wit
nonlinear theory the ratios of the amplitudes are almost c
stant near the onset of oscillations. The perfect bifurcatio
typically connected with the violation of certain symmetr
Numerous jumps of the functions in Fig. 16~a! in the region
3300,Re,5300 indicate the changes of the flow state a
various bifurcations occurring in the system. For example

c

FIG. 14. Temperature record and its power spectrum form53
solution in the quasiperiodic regime, Re54000. v0565.19, v1

532.21.

FIG. 15. Temperature temporal power spectrum form53 solu-
tion in the aperiodic regime, Re54500. Two characteristic frequen
ciesv0570.56 andv1532.36.
1-8
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the period-doubling bifurcation Re'3950, all curves have a
twist. At the beginning of the chaos, Re'4200, the ratios
A1 /A0

2 andA3 /A0
4 have distinguishable local maxima. In th

transient regime, aperiodicity→periodicity (5100<Re
<5300), the behavior of the ratios of higher harmonics
very complex. Moreover, at Re'5200 the amplitude of the
second harmonic,A(3v0), overtakes the amplitude of th
first harmonic,A(2v0). Possibly, the second harmonic tak
energy from the weak noise in the spectrum and stabil
the flow. Actually, the interruption of chaotic behavior sta
at Re'5100 and the signal power spectra become cl
without any noticeable broadband noise and secondary
quencies, see also Fig. 9.

The entropy evolution, see definition in Eq. 6, for them
53 traveling wave is shown in Fig. 16~b!. Its behavior re-
flects the dynamic transitions in the system. Indeed, the
tropy slowly augments with appearance of the harmonic
the system when Re>1500. It passes smoothly through th
quasiperiodic bifurcation and sharply grows up and dim
ishes in the vicinity of the period-doubling state, R
'3950. In the chaotic area, Re>4200, when a lot of the
harmonics are excited, the entropy again increases.
might be caused by either the spectral noise which cont
large percentage of the total energy of the system and ‘‘fe
backs’’ the entropy or an incommensurate frequency. Its n
smooth behavior inside the region of aperiodicity indica
the numerous dynamic changes induced by superior harm
ics.

At the end of aperiodicity, Re'5100, the entropy drops
down and holds some minimal value during the transi
regime 5100<Re<5300. This constancy implies that the e
ergy is distributed over a few harmonics. Indeed, looking
Fig. 9, in this narrow region one should find that two fr
quenciesv0 andv1 and their linear combinationsv5N v0
1M v1 fill the spectrum but there is no broadband noi
The entropy rises up near Re'5300 indicating the dynamic

FIG. 16. Ratios of the amplitudes of harmonics to the fun
mental frequency in the appropriate powers~a! and global entropy
~b!, Eq. ~6!, as functions of the Reynolds number form53 travel-
ing wave.Ai ,i 51,2, etc., means the amplitude of thei th harmonic,
A0 is the fundamental frequency. The rhombs correspond to
calculated points, and the solid line is the result of spline inter
lation.
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change in the system due to the vanishing of the freque
v1. Above Re'5300 there is no sign of the presence ofv1

in the spectrum, only fundamental frequencyv0 and its har-
monics. As a result, the entropy and ratioA0 /A1

2 diminish.
The behavior of the velocity field is coherent with th

temperature evolution, thus oscillations of velocity lose th
periodicity at the same'4200 Reynolds number. Below
Re'3000 axial velocity performs periodic oscillations wit
only one maxima and its amplitude is nonmodulated. Sho
before the appearance of the incommensurate frequency
extremum bifurcation gives rise to the splitting of th
maxima of the axial velocity, shown in Fig. 17. Pea
splitting phenomenon occurs at«'2.70 for them53 pattern
while for m52 solution it is observed at«'0.56 ~compare
Figs. 7 and 17!. A characteristic time signalV(t) with three
maxima per period is shown by the insertion in the Fig.
for Re53500. Such kind of time-dependent behavior r
mains unchanged until Re'4000; with further increasing the
Reynolds number four or more maxima may encounter. T
shaded area is framed by the smallest and largest value
maxima for fixed Re and does not display the amount
them. The splitting of maxima completes at Re'5500, soon
after the transition of the system from aperiodic to the n
periodic regime. The peak-splitting phenomenon is also
herent to the temperature oscillations from the beginning
the quasiperiodic regime.

D. Comparison of the solutions with different wave numbers

Two branches of three-dimensional periodic orbits, tra
eling waves withm52 and m53, coexist for Re.Re2

cr .
The solution withm52 always remains periodic, but th
m53 wave number one becomes nonperiodic at Rch

'4200. Kudrolli and Gollub@14# reported experimental ob
servation of the coexistence of patterns of different symm
tries in forced surface waves~Faraday waves! in the large
system limit. These different patterns coexisted only with
certain parameter ranges. They obtained that the transitio
spatiotemporal chaos depends upon the symmetry of the
mary patterns. But, despite the basic symmetry, all patte
finally undergo a transition to chaos. In the present study,
have found different solutions, among which one of the

-

e
-

FIG. 17. The evolution of the maxima of axial velocity signa
as the Reynolds number increases form53 oscillatory solution.
One-maximum oscillations undergo multimaxima ones at
'3300 and then have only one maxima after Re'5500.
1-9
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SHEVTSOVA, MELNIKOV, AND LEGROS PHYSICAL REVIEW E68, 066311 ~2003!
does not reveal chaotic features throughout the whole ra
of the investigated parameters,e<8.5.

The amplitude of the sustained temperature oscillatio
defined asAT5(Qmax2Qmin)/2, is shown in Fig. 18 for
both solutions. Solid line with asterisks representsm52 so-
lution, while the dotted line with rhombs corresponds to t
m53 solution. The amplitude of them52 solution increases
with the Reynolds number until it reaches a maximum
about Re52300. No changes in the structure of the th
mocapillary flow have been observed near this point.
though, as it was shown in Fig. 8 near this point the non
ear oscillations undergo transition from II-d to III-d regim
see Fig. 8. With further increase of the Reynolds number
amplitudeAT smoothly diminishes. The temperature amp
tude of them53 solution does not have any pronounc
maximum, but its behavior with Re reflects the dynam
transitions in the system. Above the onset of instability
amplitude grows with Re, achieves some saturation va
AT* 50.035, and remains almost constant when 2300<Re
<3000. At the beginning of the quasiperiodic regime t
amplitude starts to grow up. Note that above Re'3300 the
temperature amplitude is rather strongly modulated. Diff
ent types of shorter wave modulations are hidden inside
long-wave modulation, e.g., see Fig. 14. The maximal va
of AT over a longest modulation period is shown in Fig.
for the quasiperiodic regime. At the point of period doublin
Re'3950, the amplitude jumps down and then goes
Achieving the aperiodic regime, its (AT) behavior becomes
nonsmooth, being larger than maximal valueAT* in the peri-
odic regime. The determination of the amplitude of oscil
tions is more difficult for the aperiodic regime, and it
roughly estimated according to the global extrema on a l
time interval. When the system attains the periodic windo
Re>5100, the amplitude drops down below the initial sa
rated valueAT* and continues to decrease.

The evolution of the fundamental frequenciesv0 with the
Reynolds number is shown in Fig. 19. Near the Re2

cr the
values of the main frequencies are rather close, e.g., a
5900 them52 solution has the frequencyv0527.35 and
m53 has the frequencyv0528.72. Both solutions demon
strate almost linear dependence ofv0 upon Re, only the
slopes are different. The frequency of them53 solution
grows faster with increase of the Reynolds number. Unl
the evolution of the amplitude, the frequency of them53

FIG. 18. Amplitudes of temperature oscillations vs the Reyno
number,AT50.5(Qmax2Qmin). Solid line and asterisks represe
m52, while the dashed line with rhombs denotesm53 mode.
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solution does not trace the dynamic bifurcations in the s
tem. The frequency skip, which often accompanies the
namic transitions, is not observed here. Possibly, the
quency skip is related with the presence of the gravity for
It was experimentally observed by Frank and Schwabe@8#
and by Uenoet al. @7# in ground based experiments, and
was numerically determined by Melnikovet al. @15# in liquid
with Pr518.76.

The mean azimuthal flow is an important characteristic
the system when 2D thermal convection with period
boundary conditions becomes unstable. An integral quan
of the flow past bifurcation, the net azimuthal flow, provid
information about the nonlinear characteristics of the fl
organization. The net azimuthal flow is determined as
integral of the mean azimuthal velocity over the volume:

F5E Vw,mean~r ,z,t !rdr dz,

Vw,mean~r ,z,t !5
1

2pE Vw~r ,z,w,t !dw. ~7!

Here,Vw(r ,z,w,t) is the azimuthal velocity. Actually, the
resulting mean azimuthal flow includes only nonlinear se
interactions as the contribution of the leading terms is z
owing to the spatial periodicity. Thus nonlinearity of the h
drothermal waves can be described by this net flow. T
integral characteristic indicates the intensity of the 3D flo
in the case of the traveling wave. The dependence of
mean flow on the Reynolds number is shown in Fig. 2
where solid line and asterisk represent them52 solution,
while rhombs correspond to them53 flow pattern.

On the net azimuthal flow plot for them53 solution~Fig.
20! there are two clearly distinct regions related to~a! peri-
odic and to~b! quasiperiodic, aperiodic dynamics. Let u
drop the quasiperiodic and aperiodic points off and conn
the two regions of periodicity Re<3300 and Re>5100 using
parabolic interpolation technique~dotted line in Fig. 20!. Let
us nominate this interpolated plot as ‘‘regular branch’’ of t
azimuthal net flow. So, in the periodic phase the net a
muthal flow plot and the regular branch coincide. One c
clearly see that at Re53300, the periodic/quasiperiodic b
furcation, the plot starts to deviate from the regular bran
~in the quasiperiodic and chaotic region it significantly dro

s
FIG. 19. Dependence of the fundamental frequency upon

Reynolds number. Solid line and asterisks representm52, while
the dashed line with rhombs denotem53 mode.
1-10
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MULTISTABILITY OF OSCILLATORY . . . PHYSICAL REVIEW E 68, 066311 ~2003!
off!. A quantitative criterion of the deviation from ‘‘regular
ity,’’ dF , may be suggested as

dF5~F reg2F!/F reg , ~8!

whereF is the real calculated value andF reg is the value of
the net azimuthal flow on the regular branch along which
m53 solution is periodic. The variation ofdF with Re is
shown in Table III.

As it follows from Fig. 20 for the quasiperiodic/aperiod
regimes the net azimuthal flow is always below its regu
branch F reg . Indeed, at the quasiperiodic regime the n
flow starts to reduce, see the deviation expressed bydF in
Table III. Within the aperiodic regime, where the disorder
higher, the reduction of the net flow is about of 15216 %. It
seems that the energy is transferred from the mean flow
the growing disturbances. In the case of standing wave,
to the symmetry, the net flow is equal to zero, see Ref.@10#.
Hence, we may suggest that in the system with perio
boundary conditions, e.g., in a liquid bridge, the stand
wave solution will never lead to aperiodicity.

E. Route to aperiodic oscillatory state

The discussion below concerns only them53 solution.
The observed scenario of the onset of aperiodicity in
liquid bridge shows that the present route to chaos may
classified as the quasiperiodicity. The quasiperiodic bifur
tion occurs at Re'3300 when the second frequency appe
~Figs. 9–11!.

Analyzing the phase plane portrait of a nonlinear syste
one can say that attractorV is chaotic if~a! in a state space
region the orbits are dense, i.e., they fill the phase space
of the strange attractorV, and~b! the orbits are topologically
transitive inV, i.e., for any two open setsV1 , V2 from V
there is a time for which any orbit starting atV1 ends atV2
~Wiggins @16#!. The first of the criteria can be verified nu
merically, while the second one is not so easy to be provi

FIG. 20. Net azimuthal flow, defined by Eq.~7!, vs the Reynolds
number. Solid line and asterisks representm52 solution, while
rhombs denotem53 solution and dotted line corresponds to t
regular branch along which them53 solution is periodic.
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in a simple way. Nevertheless, along with the other obser
features of the behavior of the system in this region of
Reynolds number it can be concluded that the orbit for
54500 shown in Fig. 13 can be classified as weakly chao

The type of quasiperiodic route, which actually occurs
the system as the control parameter continues increasin
probably a function of many parameters characterizing
system’s dynamics. The classical scenario could be th
third independent frequency appears, i.e., the attractor
comes a hypertorus. If this attractor is unstable against
turbations, the system dynamics become chaotic. In our c
it seems that it is not the distinguishable third frequency,
the broadband spectral noise~a set of incommensurate fre
quencies!, which is responsible for the aperiodicity. Amon
the known scenarios of the onset of chaos, the concep
Ruelle-Takens~see Refs.@17,18#! is mostly corresponding to
the considered system as it takes three bifurcations for
system to get turbulent state. At Re2

cr the attractor takes the
form of a periodic orbit, at a larger value of the contr
parameter the power spectrum has two incommensurate
quencies and the attractor changes to a torus~quasiperiodic
phase!. Aperiodic regime begins directly from the quasipe
odic one.

The complete dynamic behavior of the system with tw
symmetry patterns are summarized by the schematic gra
in Fig. 21. The sequence of bifurcations leading to tempo
chaos can be identified in the case of them53 solution.
Each bar is labeled by letters P, QP2, and NP reading for
periodic, two frequencies quasiperiodic, and nonperiodic,
spectively. Numbers below the bars denote the values of
Reynolds number at which the marked above events t
place.

Note that the spatial Fourier spectra, being discrete
cylindrical geometry, reveal the increasing of the amplitu

FIG. 21. Schematic graphs of the dynamics of the various sta
solutions with them52 and 3 wave numbers as the Reynolds nu
ber increases.m52 traveling wave is always periodic. The solutio
described by the traveling wave withm53 wave number undergoe
aperiodic bifurcation preceded by the quasiperiodic dynamics.
letters inside the bars denote the following: P, periodic; QP2, two
frequencies quasiperiodic; NP, nonperiodic.
00
157
TABLE III. Spatial disorganization of the flowdF , Eq. ~6.2!, as a function of the Re, 3300<Re<5000, m53.

Re 3500 3700 3900 3950 3970 4000 4100 4200 4300 4400 4600 50
dF 0.009 0.043 0.116 0.112 0.090 0.144 0.158 0.147 0.157 0.144 0.144 0.
1-11
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SHEVTSOVA, MELNIKOV, AND LEGROS PHYSICAL REVIEW E68, 066311 ~2003!
of the various modes in temporally aperiodic regime. Prim
rily, it concerns the amplitude of modesm51 andm54, but
the modem53 remains dominant when the temporal cha
is progressing.

V. CONCLUSIONS

The thermocapillary flow in cylindrical liquid zone hel
between two parallel rods at different temperatures is stud
under zero-gravity conditions. A parametric investigation
the onset of aperiodicity~chaos! in a liquid bridge is numeri-
cally carried out for a medium Prandtl number liquid,
54, and unit aspect ratio. The different spatiotemporal p
terns of the thermocapillary flow are analyzed, beginn
from the onset of instability up to the appearance of
nonperiodic flow and further on~up to «'8.5). Two-
dimensional steady flow becomes oscillatory with azimut
wave numberm52 as the result of a supercritical Hopf b
furcation at Re1

cr5630. A second solution with an indepen
dent frequency and an independent wave number,m53, is
found to appear at Re2

cr'810. Two solutions withm52 and
m53, each of them being traveling waves with differe
symmetry patterns, coexist for Re.Re2

cr .
The symmetry of the final solution keeps the memory

the initial state of the system for Re.Re2
cr5810; namely,

taking an initial guess withm51,2,4,6, etc., symmetries
after some transient time the system will arrive tom52
traveling wave solution. Otherwise, all the odd basic symm
tries m53,5,7 ~exceptm51) give m53 traveling wave as
final state of the system.

For them52 solution, the critical mode at the first bifu
cation, the flow remains strictly time periodic up to R
56000. Nevertheless, three different regimes have been
tected according to the nonlinear characteristics.

The m53 flow pattern manifests another type of the b
havior. The motion admits rather strong harmonics in
spectrum just near the onset of the oscillations at R2

cr

5810. It undergoes a transition from the periodic to
weakly chaotic flow via quasi-periodic and period-doubli
states. A new frequencyv1 , relatively small compared to th
main onev0, appears in the spectrum at Re'3300. The ratio
v1 /v0 being larger than 0.5 at the birth ofv1 is a decreasing
function of the Reynolds number, therefore sometimes th
ratio becomes irrational. Hence, quasiperiodic regime w
two incommensurate frequencies is established. The fl
with azimuthal wave numberm53 starts exhibiting chaotic
.J

h

ds
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features at Re'4200. The onset of temporal nonperiodici
is shown to be associated with development of broadb
noise in spectra and preceded by a quasiperiodicity. It can
concluded that the Ruelle-Takens scenario prevails aga
other ones.

An interesting property of the aperiodicm53 solution is
its transition back to a periodic oscillatory behavior at high
values of the Reynolds number. Secondary periodic insta
ity occurs at Re'5100. This periodic window spreads a
least until Re56000, the largest Reynolds number studied
this paper.

The entropy of the system has been calculateda poste-
riori . The low peak value of the entropyS50.09 for them
52 solutions confirms that a quite ordered flow field osc
lates in the liquid bridge. The small changes of the entro
with Re indicate that the energy is spread over a few h
monics. For them53 flow the peak valueS50.2 indicates
that the system reveals a weakly chaotic behavior. Inside
region of aperiodicity this maximal value is slightly chang
with Re, indicating the numerous dynamic transitions
duced by superior harmonics.

The behavior of the net azimuthal flow verifies the ex
tence of the chaotic regime. For the periodic regimes in b
cases,m52 andm53, it smoothly grows with the increas
of the Reynolds number. But for the quasiperiodic and a
riodic flow states the net azimuthal flow drops down fro
the regularly growing branch. We can conclude that the
ergy is transferred from the mean flow into the growing d
turbances.

The peak-splitting phenomenon for them53 flow is in-
herent to the temperature and the velocity oscillations fr
the beginning of the quasiperiodic regime. It seems t
peak-splitting bifurcation occurs when there is a nonz
phase shift between different harmonics. The experiment
observed in Ref.@8# peak-splitting phenomenon of the tem
perature oscillations occurs simultaneously with the appe
ance of the exclusively odd harmonics ofv0 in the Fourier
spectra for NaNO3 liquid zone. In our system we did no
notice existence of only even or only odd harmonics.
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